Nonstandard Drinfeld-Sokolov reduction

نویسنده

  • F. Delduc
چکیده

Subject to some conditions, the input data for the Drinfeld-Sokolov construction of KdV type hierarchies is a quadruplet (A,Λ, d1, d0), where the di are Z-gradations of a loop algebra A and Λ ∈ A is a semisimple element of nonzero d1-grade. A new sufficient condition on the quadruplet under which the construction works is proposed and examples are presented. The proposal relies on splitting the d1-grade zero part of A into a vector space direct sum of two subalgebras. This permits one to interpret certain Gelfand-Dickey type systems associated with a nonstandard splitting of the algebra of pseudo-differential operators in the Drinfeld-Sokolov framework. ∗ Permanent address: Department of Theoretical Physics, József Attila University, H-6720 Szeged, Hungary. ENSLAPP, URA 14-36 du CNRS, associé à l’E.N.S. de Lyon et au L.A.P.P.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System

In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...

متن کامل

Vanishing of Cohomology Associated to Quantized Drinfeld-sokolov Reduction

We prove a vanishing theorem of the cohomology arising from the two quantized Drinfeld-Sokolov reductions (“+” and “−” reduction) introduced by Feigin-Frenkel and Frenkel-Kac-Wakimoto. As a consequence, the vanishing conjecture of Frenkel-Kac-Wakimoto is proved for the “−” reduction and partially for the “+” reduction.

متن کامل

Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

The p × p matrix version of the r-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra ĝlpr ⊗CI [λ, λ]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algeb...

متن کامل

Supersymmetric Drinfeld - Sokolov reduction

The Drinfeld-Sokolov construction of integrable hierarchies, as well as its generalizations, may be extended to the case of loop superalge-bras. A sufficient condition on the algebraic data for the resulting hierarchy to be invariant under supersymmetry transformation is given. The method used is a construction of the hierarchies in superspace, where supersymmetry is manifest. Several examples ...

متن کامل

Solutions to WDVV from generalized Drinfeld-Sokolov hierarchies

The dispersionless limit of generalized Drinfeld-Sokolov hierarchies associated to primitive regular conjugacy class of Weyl group W (g) is discussed. The map from these generalized Drinfeld Sokolov hierarchies to algebraic solutions to WDVV equations has been constructed. Example of g = D4 and [w] = D4(a1) is considered in details and corresponding Frobenius structure is found.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997